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The unsteady fully nonlinear free-surface flow due to an impulsively started sub-
merged point sink is studied in the context of incompressible potential flow. For
a fixed (initial) submergence h of the point sink in otherwise unbounded fluid, the
problem is governed by a single non-dimensional physical parameter, the Froude
number, F ≡ Q/4π(gh5)1/2, where Q is the (constant) volume flux rate and g the
gravitational acceleration. We assume axisymmetry and perform a numerical study
using a mixed-Eulerian–Lagrangian boundary-integral-equation scheme. We conduct
systematic simulations varying the parameter F to obtain a complete quantifica-
tion of the solution of the problem. Depending on F, there are three distinct flow
regimes: (i) F < F1 ≈ 0.1924 – a ‘sub-critical’ regime marked by a damped wave-
like behaviour of the free surface which reaches an asymptotic steady state; (ii)
F1 < F < F2 ≈ 0.1930 – the ‘trans-critical’ regime characterized by a reversal of
the downward motion of the free surface above the sink, eventually developing into
a sharp upward jet; (iii) F >F2 – a ‘super-critical’ regime marked by the cusp-like
collapse of the free surface towards the sink. Mechanisms behind such flow behaviour
are discussed and hydrodynamic quantities such as pressure, power and force are
obtained in each case. This investigation resolves the question of validity of a steady-
state assumption for this problem and also shows that a small-time expansion may
be inadequate for predicting the eventual behaviour of the flow.

1. Introduction
We consider the incompressible irrotational axisymmetric flow caused by a point

sink beneath a free surface. This is a problem of fundamental scientific interest and
has engineering importance in applications such as optimal pumping from storage
tanks, ocean thermal power plant, cooling and solar ponds, as well as water quality
control in reservoirs and lakes. Because of this, the fluid ‘withdrawal’ problem has
been the subject of many investigations in recent years.

Largely because of analytical and computational simplification, most of the studies
are for the two-dimensional case assuming steady flow (Peregrine 1972; Vanden-
Broeck, Schwartz & Tuck 1987; Tuck & Vanden-Broeck 1984; Sahin & Magnuson
1984; Hocking 1985, 1988; Collings 1986; Vanden-Broeck & Keller 1987; King
& Bloor 1988; Mekias & Vanden-Broeck 1989, 1991, 1993). For infinite depth,
stagnation-point solutions, those characterized by a stagnation point at the free surface
directly above the sink, are found for Froude number F (based on the volume flux
rate and submergence) below a critical value. Above this value, steady-state solutions
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have not been found, except for a cusp solution (the free-surface profile is a downward
facing cusp with its tip above the sink) at a unique super-critical value of F.

A notable exception to these steady solutions is Tyvand (1992) who focused on
the initial evolution of the free surface for the two-dimensional problem using a
small-time expansion. Arguing that nonlinear free-surface effects are exactly cancelled
by gravitational effects for a particular Froude number, he finds the critical value of
F ≡ Q/2π(gh3)1/2 = 1/3 for the formation of a centre dip, where Q is the volume flux
rate of the sink, h its submergence with respect to the far-field/initial free surface,
and g the gravitational acceleration. This value is appreciably lower than the upper
limit ofF =1.42 of Hocking & Forbes (1991) based on a steady-state analysis, which,
as pointed by Tyvand, shows that the unsteady problem offers new insight into its
steady counterpart.

Investigations of the three-dimensional problem are fewer and more recent with
the exception of linear analyses (e.g. Wehausen & Laitone 1960) and experiments
(e.g. Lubin & Springer 1967; Miloh & Tyvand 1993). The salient feature of the
experimental observations is the formation of a dip on the surface above a critical
Froude number. Assuming steady state and a stagnation point at the surface above the
sink, Forbes & Hocking (1990) used a boundary-integral-equation (BIE) computation
as well as a small-Froude-number analysis to show that such a steady stagnation-point
solution exists for small Froude numbers, in this case, F ≡ Q/4π(gh5)1/2 < 0.509.
Above this value of F, their calculation fails to give a steady-state solution. This,
however, does not rule out unsteady/steady solutions below/above this value. Whether
the unsteady withdrawal flow with a cusp pointing towards the sink is the only
permissible outcome for large Froude number, in contrast to the corresponding two-
dimensional problem (where a steady cusp-type flow exists even at infinite Froude
number), remains unclear.

Zhou & Graebel (1990) perform numerical simulations of drainage from a cylindri-
cal basin using a nonlinear axisymmetric BIE method. Their results for the unsteady
problem show two different phenomena depending on the drain rate. For relatively
large Q, a dip forms at centre of the free surface which is rapidly drawn into the
drain. For small Q, they observe an upward jet depending on the drain size. In their
problem, the Froude number is defined with respect to the tank radius. Since this is
not the (only) physically important parameter, the precise dependence on F for this
problem is not established.

More recently, Miloh & Tyvand (1993) extend the small-time perturbation analysis
of Tyvand (1992) to axisymmetric flow and identify the corresponding critical Froude
number to be F = 15−1/2 ≈ 0.258. Presumably, a dip forms on the free surface and
eventually collapses towards the sink only forF greater than this value. This analysis
depends only on the third-order (leading order of gravitational effect) time derivative
of the centre surface elevation at time t = 0 and its validity for the long-time evolution
of the actual physical problem is unclear.

In this paper, we consider the unsteady fully nonlinear free-surface flow above a
submerged (three-dimensional) point sink started abruptly from rest to a constant
volumetric withdrawal rate Q. The problem is governed by a single dimensionless
physical parameter, the Froude number F ≡ Q/4π(gh5)1/2, where h is the initial/far-
field submergence and g the gravitational acceleration. We computationally map
out the entire solution of the problem systematically varying F. The computational
method we employ is a fully nonlinear mixed Eulerian–Lagrangian (MEL) approach.
We assume axisymmetry, and for the solution of the field equation we use an
axisymmetric (ring-source) BIE technique (Dommermuth & Yue 1987). The paper is
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organized as follows: the initial-boundary-value problem is stated in §2. The MEL
axisymmetric BIE computational method, which follows closely that of Dommermuth
& Yue (1987), is outlined also in §2 for completeness. Section 3 contains detailed
validation of the computational method which is important to support the results
which are presented in §4. We conclude with a summary and discussion in §5 where
we compare our findings with existing results.

2. Problem statement and solution method
We consider a point sink with an initial (quiescent) submerged depth h below a

free surface in an otherwise unbounded fluid. At initial time t = 0, the sink is turned
on abruptly from zero to a constant volumetric flow rate Q. For simplicity, we choose
time, length and mass units such that the depth h, the gravitational acceleration g, and
the fluid density ρ are all unity. In the context of inviscid, irrotational, incompressible
flow and ignoring surface tension, the problem is governed by a single physical
parameter, the Froude number:

F ≡ Q/4π(gh5)1/2. (1)

We further assume that the flow is axisymmetric and non-rotating (cf. Monismith,
McDonald & Imberger 1993). The resulting potential flow is described by a velocity
potential φ(x, t) with the fluid velocity given by v = ∇φ. Inside the fluid domain V (t),
φ satisfies the Laplace equation

∇2φ = 0 in V (t). (2)

On the free surface F(x, t), the kinematic and dynamic (assuming zero atmospheric
pressure) boundary conditions in Lagrangian forms are

Dx

Dt
= ∇φ on F(x, t), (3)

Dφ

Dt
= −gz + 1

2
|∇φ|2 on F(x, t), (4)

where the vertical coordinate z is positive up, and z = 0 is the undisturbed free surface.
At large depth, the velocity must vanish, |∇φ| → 0, z → −∞. For computations, the
domain is simply closed at some large (constant) depth B: z = −H with the condition

∂φ

∂z
= 0 on B: z = −H, H � 1. (5)

Finally, we specify zero initial conditions and a suitable far-field condition:

φ→ 0 as |x| → ∞, t < ∞. (6)

For numerical solution of the initial-boundary-value problem, we adopt the fully
nonlinear axisymmetric MEL method of Dommermuth & Yue (1987). In order to
achieve long-time simulations, in that method, the far-field condition (6) is satisfied
by matching the fully nonlinear inner MEL solution to a general time-dependent
linearized outer wave field at a fixed radius on a matching cylinder M: r = A. Since
the far-field wave amplitude must necessarily decay with radius in three dimensions,
for a suitably chosen matching radius A (based on nonlinearity only), fully nonlinear
(inner) simulations can be carried indefinitely in time (cf. Dommermuth & Yue 1987).
This is especially important for the present problem where the approach to asymptotic
steady state (or not) is a central question.
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In the MEL approach, the boundary-value problem at each time step is solved
using a boundary-integral method. From (2), the Green identity gives

α(x, t)φ(x, t) =

∫ ∫
−−−

S(t)

[
∂φ(x′, t)

∂n′
− φ(x′, t)

∂

∂n′

]
1

R
dS ′ +

Q

|x− xsink|
, (7)

where α(x) is the included solid angle at x, R = |x− x′| and S(t) = F ∪ B ∪M, with
overbar denoting that portion of the surface enclosed by M. Note that in (7), the
singularity at the sink, x = xsink , of strength Q is already extracted.

Assuming axisymmetry, (7) can be integrated in θ′ to yield a boundary integral in
the (r, z)-plane:

α(r, z, t)φ(r, z, t) = Q

(
1

d
+

1

d∗

)
+

∫
−
∂S(t)

r′
[
∂φ(r′, z′, t)

∂n′
− φ(r′, z′, t)

∂

∂n′

]
×
[
G(r, z; r′, z′) + G(r, z; r′,−z′ − 2H)

]
dl′. (8)

In the above, the line integral is along the trace ∂S = ∂F ∪ ∂M of F ∪M in the
(r, z)-plane; the bottom B is eliminated in favour of the image Green function with
respect to the bottom z = −H; and d = [(z+ h)2 + r2]1/2, d∗ = [(z+ 2H − h)2 + r2]1/2.
The Rankine ring-source Green function G is given by

G(r, z; r′, z′) =

∫ 2π

0

dθ′

R
=

4

ρ∗
K

(
1− ρ2

ρ∗2

)
, (9)

where ρ = [(z− z′)2 + (r− r′)2]1/2, ρ∗ = [(z− z′)2 + (r+ r′)2]1/2, and K is the complete
elliptic integral of the first kind.

In (8), neither φ nor ∂φ/∂r on ∂M are a priori known in general. The transient

history of the potential and the normal derivative of any linear wave field φ̃ outside
a closed surface M are however related, say

φ̃
∣∣
M

=H ∂φ̃

∂n

∣∣∣∣
M

, (10)

where H is a known spatial and temporal (convolution) integral operator (depend-
ing only on M) given in terms of (say) the transient free-surface Green function.
Equation (10) together with the matching conditions on M:

φ = φ̃ and
∂φ

∂n
=
∂φ̃

∂n
on M; (11)

provide the necessary closure for the integral equation (8), and the solution is complete.
Details can be found in Dommermuth & Yue (1987) where the validity and efficacy
of this matching scheme are demonstrated. These are also verified directly for the
present problem by comparing results obtained using different values of the matching
radius A (see e.g. figure 1).

For the solution of (8) (with (10) and (11)), the trace ∂S(t) is approximated by
cubic splines over (Lagrangian) nodes, and φ and φn are represented by linear
basis functions based on arclength between adjacent nodes. To maximize stability of
the time integration, for which we employ a consistent fourth-order Runge–Kutta
scheme, the nodes on the free surface are maintained at equal arclength spacing via a
regridding procedure after each time step. To track the rapid cusp-like development
of the free surface, the method of Dommermuth & Yue (1987) is improved by
introducing dynamic time stepping based on a Courant criterion in terms of panel
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Figure 1. Free-surface profiles at different times for different matching radii A and computational
depth H for the case F = 0.1 (∆` = 0.05). The horizontal and vertical scales are different (the sink
is at z = −1).

η(0, t)

A H ∆l ∆tmax ∆tmin t = 0.48 0.96 1.12 1.61

6 6 0.050 0.040 0.001 −0.0962 −0.1619 −0.1690 −0.1339
6 6 0.025 0.016 0.001 −0.0962 −0.1620 −0.1691 −0.1340
6 6 0.100 0.064 0.001 −0.0964 −0.1618 −0.1687 −0.1335
9 9 0.050 0.032 0.001 −0.0961 −0.1615 −0.1685 −0.1331
4 4 0.040 0.016 0.001 −0.0968 −0.1632 −0.1706 −0.1362

Table 1. Sample convergence results for the case of F = 0.1.

size and the maximum instantaneous Lagrangian velocity. In theory, a small-time
asymptotic expansion (cf. Miloh & Tyvand 1993) can be used to initiate the impulsive
start. This is not found to be necessary in the present simulations.

3. Validation of the computational method
The computational method for this problem is validated systematically. A typical

result is shown in table 1 for F = 0.1 for the centreline surface elevation η(r = 0, t),
where we vary the (initial) panel (segment) length ∆`, the depth of the computational
domain H , the matching radius A, and the maximum and minimum time-step sizes,
∆tmax and ∆tmin, which are the upper and lower bounds of the time step ∆t in
the dynamic time integration scheme. (In all cases, the Courant condition derived
from linearized free-surface conditions for the fourth-order Runge–Kutta scheme,
∆t2 6 8∆`/πg, is satisfied.)

Systematic tests such as these confirm the generally quadratic and fourth-order
convergence rates of the absolute error with ∆` and ∆t respectively. Table 1 also
shows that a matching radius of A = 6 and a computational depth of H = 6 (to
represent effective deep water) are sufficient. Figure 1 plots the free-surface profiles
for A,H = 6 and 9 respectively at several time instants. Of special note is the absence
of any reflection at the matching boundary r = A.
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Based on these and similar test for the full range of F we consider, we choose for
all our computations: ∆`=0.05; ∆tmax = 0.032; ∆tmin = 0.001; A = 6; and H = 6. The
expected error in the free-surface elevation is less than O(1%) in all cases.

All the computations are also checked for volume conservation:∫ ∫
F

∂φ

∂n
dS +

∫ ∫
M

∂φ

∂n
dS = −Q, (12)

and energy conservation:

1
2
ρQ

∂

∂t

[
φ− Q

4π|x− xsink|

]
xsink

=
d

dt

[∫ ∫
F∪M

ρ

2
φ
∂φ

∂n
dS +

∫ ∫
F

ρ

2
gz2nz dS

]
−
∫ ∫

M

ρ
∂φ

∂t

∂φ

∂n
dS. (13)

In (13), the left-hand side is associated with the disturbance flow net of the sink flow,
which is non-singular. This is the sum of the rate of energy input and the rate of
work done by the sink, and equals half the rate of work done (i.e. power) by the sink.
The first term on the right-hand side represents the rate of increase of kinetic and
potential energy in the fluid volume V ; and the last term represents the rate of energy
flux across the matching boundary M. Note that the kinetic energy introduced into
the fluid at the initial instant is inversely proportional to the (small) dimension of
the sink, and in the present case of an idealized point sink, is in theory unbounded.
Nevertheless, for finite time thereafter, the power associated with the draining is well
defined and does not depend on the (small) sink dimension. For all the runs, volume
is typically conserved to within 0.001% and energy conservation (13) maintained to
less than 1%.

4. Results
We perform a systematic computational investigation varying the only physical

parameter F to provide a complete quantification of the solution of this problem.
Careful search over the entire range of F > 0 reveals three distinct flow regimes
corresponding to: (i) F < F1: sub-critical case; (ii) F1 < F < F2: trans-critical
case; and (iii) F > F2: super-critical case; with F1 ≈ 0.1924 and F2 ≈ 0.1930.
These values are obtained with (final) Froude number increments δF � 10−4 and
are not affected when space–time discretizations are further refined. The solutions in
these three regimes are described separately below.

4.1. Sub-critical regime: F <F1 ≈ 0.1924

In this sub-critical regime, the flow is marked by a damped wave-like behaviour of
the free surface which eventually tends to an asymptotic steady state. A typical sub-
critical result for F = 0.1 is shown in figure 2 for the free-surface profiles at different
times. The free surface near the origin initially goes down, reaches a minimum value,
then rises and then settles towards an asymptotic value in an oscillatory manner
emitting outwardly propagating radial waves in the process. Note that with the use
of the matching boundary, we are able to continue simulations to well beyond O(10)
characteristic time (limited only by computational effort).

The wave-like behaviour is better seen in the time-histories of the free-surface
elevation at specific radii (figure 3). At each r, the free surface behaves like a damped
oscillator, eventually reaching an asymptotic steady state. That the time for steady
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Figure 2. Free-surface profiles at different times for sub-critical F = 0.1. The horizontal and
vertical scales are different (the sink is at z = −1).
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Figure 3. Time histories of the free-surface elevation for sub-critical F = 0.1 at different radii
curve (1) r = 0; (2) 1; (3) 2; (4) 4; (5) 6. The dashed line is the elevation at r = 0 from linear theory
according to equation (15).

state to be reached increases with distance from the centre is evident from figure 3.
It is shown more clearly in a space–time (‘waterfall’) plot of the surface elevation
(figure 4) where there is a discernible receding wave front, behind which an asymptotic
steady state establishes.

A perhaps more convincing proof that an asymptotic steady state is reached is a
plot of the volume flux rate across a fixed radius. This is shown in figure 5 for r = 1.
After about t ∼ 10, the flux rate reaches a constant value of close to Q indicating
that steady state is reached for r < 1. A plot of the instantaneous velocity field helps
explain this type of behaviour. This is shown in figure 6 for t = 2, which shows
the existence of a stagnation point on the centreline above the sink, and a dividing
streamline terminating at the stagnation point. As steady state is reached, the dividing
streamline no longer moves and the flux into the sink comes completely from flow
below this streamline.
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Figure 4. Space–time plot of the free-surface profiles η(r, t) for sub-critical F = 0.1.
Time increment between two successive free-surface profiles is ∆t = 0.2.
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Figure 5. Volume flux rate (normalized by Q) across r = 1 as a function of time,
for sub-critical F = 0.1.

From figure 3 (for example, for r = 1 and 2, asymptotic steady states are reached
at t ' 14 and 18 respectively), and the slope of the receding front in figure 4, one
estimates that the radius below which an asymptotic steady state is reached increases
with time with a group velocity of Cg ' 0.25. From figure 4, the corresponding
wavelength can also be estimated to be λ ' 1.6. This is in good agreement with the
linearized (two-dimensional for reasonably large r) dispersion relation Cg ' 0.2λ1/2

and is consistent with diminishing nonlinear effects away from the centre.
For sufficiently smallF, one may apply linearized free-surface boundary conditions

throughout, and the solution of the linearized problem can be written in closed form
(cf. Wehausen & Laitone 1960):

φ(r, z, t) =F
(

1

|x− xsink|
+

1

|x− x∗sink|

)
− 2F

∫ ∞
0

cos(k1/2t)ek(z−1)J0(kr) dk (14)

where x∗sink is the image point of the sink about the undisturbed free surface. The
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Figure 6. Velocity field for sub-critical F = 0.1 at t = 2. The dividing streamline terminating at
the stagnation point near (0,−0.27) is also plotted. The vertical and horizontal scales are equal (the
sink is at (0,−1)). Note that for clarity the left-hand axis of the figure is displaced from r = 0. A
reference vector is given above.

corresponding free-surface elevation is

η(r, t) = −2F
∫ ∞

0

k1/2 sin(k1/2t)e−kJ0(kr) dk. (15)

It is easy to see (e.g. using integration by parts) that the integral terms in (14) and (15)
vanish with increasing time for any finite r so that the linearized result does predict
asymptotic steady state. Specifically, from (15), we obtain the behaviour for the free-
surface elevation, say at the origin: η(0, t). This is plotted in figure 3. The surface
elevation first decreases to reach its lowest level ηmin ≈ −1.466F at t = 1.191, then
reverses direction to reach its highest (positive) value ηmax ≈ 0.220F at t = 3.911, after
which it decreases monotonically in time to zero (the far-field level). This is different
from that of the corresponding linearized solution for a two-dimensional sink flow. In
the latter case, the elevation first drops to its lowest level (at t = 1.848) then reverses
direction to monotonically reach the far-field level without ever becoming positive.

Although linear theory predicts the asymptotic steady state, it should be noted that
the sub-critical regime extends beyond where linear theory is valid. In some sense,
the linear prediction of the steady state is a trivial one at least in the limiting case
of F = 0 – the sink and its image with the undisturbed free surface being a plane
of symmetry. In fact, figure 3 agrees with (15) well (say with maximum normalized
error of 2%) only for F less than about 0.02 (see figure 15).

4.2. Super-critical regime: F >F2 ≈ 0.1930

For Froude number greater than a critical value of F2 ≈ 0.1930, the solution is
characterized by a rapid cusp-like collapse of the free surface towards the sink. The
decrease of the surface elevation is everywhere monotonic in time. We are able to
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Figure 7. Free-surface profiles at different times for super-critical F = 0.24. The horizontal and
vertical scales are different (the sink is at z = −1).

(a) (b)

t

η
(0

, t
)

0

–0.25

–0.50

–0.75

–1.00
0 0.2 0.4 0.6 0.8 1.0

–4

–6

–8

–10

φss(0, t )

φ
ss

(0
, t

)

η
(0

, t
)

..

η(0, t )
..

t
0 0.2 0.4 0.6 0.8 1.0

–2

0

–10

–8

–6

–4

–2

0

2

4

Figure 8. Time evolution of (a) the centreline free-surface elevation η(0, t), and (b) acceleration
η̈(0, t) and strain rate φss(0, t) (s is arclength) for super-critical F = 0.24.

compute well after the cusp has developed, limited by the spatial discretizations
and minimum temporal increment we use. Eventually, as the free surface approaches
the sink, the velocity asymptotically develops a inverse square singularity, and the
simulations finally break down.

Figure 7 shows typical super-critical results for the case of F = 0.24 for the in-
stantaneous free-surface profiles η(r, t) at different times of the development of the
centre dip. The decrease in elevation is everywhere monotonic in time and monoton-
ically increasing with decreasing radial distance for all time, eventually developing a
cusp-like profile. Figure 8 plots the time evolution of the free-surface elevation and
the acceleration directly above the sink. The rapidly increasing (downward) acceler-
ation towards the sink eventually reaches very large magnitudes. The super-critical
regime is the only regime for this problem where the downward acceleration exceeds
gravitational acceleration (g = 1) during the fall of the free surface.
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Figure 9. Velocity field for super-critical F = 0.24 at t = 0.84. Note the sink is at z = −1 and the
vertical and horizontal scales are equal. A reference vector is given.

The solution behaviour for the super-critical regime can be expected from physical
arguments at least in the limiting case. AsF increases, the effect of the sink eventually
dominates that of gravity and the solution then resembles that of a single point sink.
This general feature is shown in the velocity field plot in the final stage of the dip
formation (t = 0.84) for F = 0.24 (figure 9). The surface velocities at the centre
are dominant while those away from the centre are small, consistent with the rapid
formation of the dip observed for example by Lubin & Springer (1967). At this stage
of the evolution, the entire flow field resembles that due to a pure sink-induced flow
at (0,−1) with a dividing streamline approximately aligned with z = −1.

The overall dynamics can be elucidated by examining the pressure field (e.g. Zhou &
Graebel 1990). Figure 10 plots the pressure contours at three instants corresponding
respectively to early, intermediate and late stages of the free-surface collapse. At an
early time (figure 10a), there are two zero pressure lines: the free surface, and another
line inside the fluid domain around the sink. There exist then a region of positive
pressure and a pressure maximum above the sink below the free surface. As time
progresses (figure 10b), the interior zero-pressure line connects to the free surface,
eliminating the positive pressure region above the sink. The pressure gradient on the
centerline above the sink obtains a single sign (directed from the sink to the free
surface). This pressure gradient increases rapidly as the free surface drops closer to
the sink (figure 10c), and the free surface eventually develops a sharp dip towards the
sink.

We remark finally that although the free surface experiences acceleration into the
fluid much greater than gravity (g = 1) in the development of the downward dip (cf.
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figure 8b), it remains remarkably stable throughout the evolution. Rayleigh–Taylor
instability (Taylor 1950) does not obtain in this case because of the non-uniform
flow and free-surface deformation. Dagan (1975) analyses the (linearized) stability
for the case of non-uniform steady free-surface flow and shows that in addition to
Taylor’s dynamic condition on the normal (to the free surface) pressure gradient,
stability depends also on a kinematic condition regarding the rate of strain of
the free surface. Although this result is strictly valid only for the initial (linear)
development of instability in steady flows, it shows clearly the favourable/adverse
effects of stretching/contracting motions on free-surface stability. These effects are also
observed in numerical simulations of nonlinear unsteady motions (e.g. the instability
of a collapsing axisymmetric gas bubble, Baker, Meiron & Orszag 1984; but stability
for the expanding/rising bubble region of a fluid layer floating on air, Baker et
al. 1987). In the present case, the stability is a result of the stabilizing effect of
the rapid stretching of the free surface near the centre (e.g. figures 9, 10) which
dominates the destabilizing effect of the large inward acceleration of the surface. A
measure of this stretching is the value of the surface strain rate at the centre, namely,
φss(0, t) ≡ ∂2/∂s2φ(0, t), where s is the arclength of the free surface measured from the
centre. This strain rate is plotted with the centreline acceleration in figure 8(b). We
see that as η̈(0, t) decreases to large negative values, φss undergoes a marked reversal
eventually becoming positive and large.

4.3. Trans-critical regime: 0.1924 ≈ F1 <F <F2 ≈ 0.1930

As we pointed out, the sub-critical solution behaviour (with an asymptotic steady
state) is suggested at least for small F from linear theory, while the super-critical
solution (with a developing centre dip) can be anticipated from physical arguments
at least in the limit of large F. Careful and systematic search of the solution space
however reveal clearly a small but distinct trans-critical regime.
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The solution in this trans-critical regime is characterized by a sharp reversal near
the origin of the initially downward motion of the free surface eventually developing
into a sharp upward jet immediately above the sink. Similar jets are also often
observed when the cavity in a bubble collapses or when steep gravity waves approach
a vertical sea-wall or a ship’s hull (Longuet-Higgins & Oguz 1997). Figure 11 plots
the instantaneous free-surface profiles for a typical trans-critical solution F = 0.1927
during the later stage of the evolution. As in the other two regimes, the free surface
drops initially everywhere reaching a minimum depth at the centre. The free surface
then rebounds abruptly, starting from the origin outwards, and eventually develops
into a sharp upward spike in the centre. Such an upward jet has some resemblance
to that observed in Zhou & Graebel (1990) for a tank with small draining rate. In
their case, however, the occurrence of such a jet is found to depend on the size of the
drain, and as that size decreases to zero the upward jet does not occur even for very
small Q (the flow remains ‘super-critical’ with the formation of a centre dip).

The temporal development and especially the velocity reversal can be best seen in
the evolution of the centreline elevation η(0, t) plotted in figure 12(a). The surface
drops initially reaching a minimal depth of about half the sink submergence at t ' 1.25
at which point it reverses upwards abruptly. The small kink in the curve after the
reversal (at t ' 1.3) in figure 12(a) is part of the solution and not a numerical artifact
as this solution feature remains when spatial/temporal discretizations are substantially
refined. We are able to continue the simulation and follow the full development of
the upward jet which eventually develops into a centre spike at which point the
solution finally fails. The ultimate maximum height of the upward jet is of practical
interest and can be estimated from the centreline vertical velocity of the jet after it has
developed. From figure 12(a), W = η̇(0, t) ≈ 2.5 after t ≈ 1.33 when η(0, t) ∼ −0.5.
This yields a maximum height of the upward jet of ∼ 0.5W 2 − 0.5 ∼ 2.63 for this
case.

The acceleration of the free surface directly above the sink η̈(0, t) is plotted in
figure 12(b). Its evolution is quite complex, undergoing altogether three sign changes
with a distinct double sign change just prior to the development of the upward jet.
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A plot of the flow field after the free-surface reversal reveals clearly the flow
structure. This is shown in figure 13 at t = 0.84 which is in the final stage of the
upward jet development. The most prominent feature is the presence of a stagnation
point above the sink (at z ∼ −0.52) similar to that in the case of sub-critical
withdrawal (cf. figure 6). A dividing streamline emanating from this stagnation point
and becoming almost parallel to the free surface some distance away divides the flow
field into two regions. In the lower region, the flow converges smoothly towards the



Nonlinear free-surface flow due to a point sink 339

z

(a) (b)
0

–0.5

–1.0

–1.5
0 0.2 0.4 0 0.2 0.4 0.6 0.8

–1.5

–1.0

–0.5

0

(c) (d )

0.6 0.8

0 0.2 0.4
r

0 0.2 0.4 0.6 0.8

r
0.6 0.8 0 0.2 0.4 0.6 0.8

0

–0.5

–1.0

–1.5

0.1
0.2
0.3
0.4

0

–0.5

–1.0

–1.5

0.1
0.2
0.3

0

z

Figure 14. Constant-pressure contours for trans-critical F = 0.1927 at four stages of the evolution:
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sink. In the region above the dividing streamline, the velocity is tangent to the free
surface (the free surface is streamline-like) some distance away forming a (slightly
downward) converging jet-like sheet. As this radial jet converges towards the centre,
the velocity is directed upwards over a very small distance, reaching large magnitudes
at the origin near the free surface below a sharp upward jet.

To understand the overall evolution, it is again useful to examine the underlying
pressure fields. These are plotted at four representative times corresponding to differ-
ent stages of the development in figure 14. The pressure fields in the early stages are
very similar to those for super-critical flow (see figure 10): the presence of an interior
zero-pressure contour around the sink (figure 14a), which then connects to the free
surface eliminating the positive-pressure zone above the sink (figure 14b). This (a
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monotonically decreasing pressure from the free surface downwards) is however not
a sufficient condition for the subsequent development of a downward dip. As the
surrounding fluid converges towards the centre driven by a radial pressure gradient,
the sink flux rate in this trans-critical regime is inadequate to draw in the total flow.
A stagnation point becomes established above the sink (see figure 13) surrounded
by a new (third) zero-pressure contour which also connects to the free surface (fig-
ure 14c). During the final stage, the zero-pressure contours previously connected to
the free surface merge and move under the positive-pressure zone as it strengthens
(figure 14d). The streamline ending at the stagnation point (see figure 13) now divides
the flow, with the converging flow above it directed into an upward jet driven by
the large positive pressure at the stagnation point. The trans-critical flow regime is
thus seen as one wherein there is a special ‘balance’ between the radially converging
flow initiated by the start-up of the withdrawal and the (constant) flux rate of that
withdrawal.

We remark in closing on the ‘Taylor’ instability of the flow in this regime. As we
see from figure 12(b), the downward (inward) acceleration of the free surface is never
close to the magnitude of gravity (−1 in figure 12b) throughout the evolution. Yet,
from figures 11 and 14 (especially figure 14b), there are distinct signs of a developing
instability on the free surface. The instability is thus a result of the negative (con-
tracting) straining of the free surface created by the near-surface radially-converging
flow. The straining rate at the centre is plotted with the centreline acceleration in
figure 11(b). Note that φss(0, t) does not become positive until after η(0, t) reverses. It
is noteworthy that after the upward jet develops and the centreline strain becomes
positive, there are clear indications that the free surface is re-stabilized (compare
e.g. the free surface profiles between intermediate and late times, say figures 14(b)
and 14(c); see also figure 11). This is probably the main reason why we are able to
continue the numerical simulations well after the (initial) development of instability.

4.4. Comparison of the different flow regimes

An interesting result is obtained if we plot the minimum value (over the entire
evolution) of the centerline surface elevation, ηmin ≡ min η(0, t), as a function of F
(figure 15). For super-critical F, ηmin = −1, as the surface is ultimately drawn into
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and aerates the sink. For the two non-super-critical regimes F < F2, however, we
note that ηmin(F) is completely smooth across the regime transition at F1 = 0.1924.
Further analysis reveal that this is in fact also true for the derivative η′min(F). The
exact explanation for this is unclear. Arguably it should not be surprising that
ηmin(F) should behave like a smooth function. That it should be so when the overall
solution behaviour changes so dramatically is remarkable. Also plotted in figure 15
is the linearized prediction based on (15) which gives a constant slope for ηmin(F)
(η′min(0) ≈ −1.466). This agrees well with the nonlinear result but only for F very
much lower that the critical value F1 ≈ 0.1924.

A practically important quantity for this problem is the power or rate of work
done by the sink in the withdrawing process. This is given in (13) (Psink equals twice
the quantity expressed therein) and is obtained for different F. Figure 16 shows
the typical sink power curves for the sub-critical and trans-critical regimes. For the
sub-critical case, the rate of work done by the sink follows closely that of the surface
elevation (with an opposite sign), for example at the origin (cf. figure 3), and decays
to zero (steady state) after one main oscillation (according to linear theory, in fact,
Psink(t) = −

√
2πF η(0, t/

√
2)). For the trans-critical regime, Psink(t) rises steadily then

becomes highly oscillatory as flow reversal occurs. Despite the oscillations, the power
equation (13) is satisfied to within ∼ 1% during the entire simulation (cf. §3).

The time history of the power is more varied for super-critical draw-down. Typical
results are shown in figure 17. Depending on the value of F > F2 = 0.1930, there
are three possible sub-regimes for Psink(t): (a) F2 <F <F3 ≈ 0.21 – the power rises
monotonically throughout, steady at first and then dramatically in the final phase
as the surface is drawn into the sink; (b) F3 < F < F4 ≈ 0.60 – the power first
increases, reaches a maximum and then drops rapidly as the free surface is drawn
down; (c) F >F4 – the power decreases monotonically from its initial value.

It should be noted that Psink is initially negative for this problem for any F > 0.
Physically, this means that the sink extracts energy from that (which is unbounded
for an infinitesimally small sink) associated with the initial abrupt start-up. Except
for trans-critical and the first sub-regime of super-critical flow, F1 < F < F3, a
maximum value of Psink(t) always exists. This is plotted in figure 18 as a function of
F. The behaviours of the curves for F < F1 and F > F3 is qualitatively different
and is indicative of the sub-critical to super-critical transition(s).
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Another dynamical quantity of practical interest is the (vertical) force on the sink:

Fz = − 1
3
ρQ

∂

∂z

[
φ− Q

4π|x− xsink|

]
xsink

(16)

= ρ

∫ ∫
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(
1
2
|∇φ|2nz −
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−ρ
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B
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|∇φ|2dS − 4

3
ρQ

∂

∂z

[
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4π|x− xsink|

]
xsink

. (17)

Equation (16) is simply 1/3 the localized Lagally force (Milne-Thomson 1968), while
(17) provides the boundary-integral formula obtained by considering momentum
conservation inside S(t). These equivalent expressions provide a further check of the
numerics – in all our simulations, Fz using either formula differs by less than O(1%).
Furthermore, in all our results, the term in (17) which accounts for the (computational)
bottom at finite depth is at least two orders of magnitude smaller than the remaining
terms indicating that the chosen H = 6 is sufficient.
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Figure 19 shows Fz(t) for typical sub- and trans-critical withdrawals. As expected,
both curves start with positive values (according to linearized theory Fz(0) = πF2/3).
The former (figure 19a) decreases from that initial value, then undergoes the character-
istic oscillation and asymptotic decay (cf. figure 3 for example). For the trans-critical
case, Fz initially increases, reaching a maximum and then decreases monotonically
eventually becoming negative before the free surface reverses direction.

The super-critical Fz again exhibits qualitatively different behaviour in three sub-
regimes (figure 20): (a) F2 <F <F3 – similar to the trans-critical case, monotonic
decrease after an initial period of slight increase; (b) F3 < F < F′4 – Fz remains
positive throughout, first reaching a (local) maximum, decreases to a positive minimum
value, then reverses direction again to increase monotonically; (c) F > F′4 – the
vertical force rises monotonically from its initial (positive) value. Note thatF′4 ' 0.35
is much lower than F4 for the power.
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We remark in closing that all results so far are for an abrupt start-up of the sink.
It is reasonable to ask whether our conclusions are sensitive to the initial behaviour
of the drain rate function, say q(t), in a more gradual start-up (e.g. Zhou & Graebel
1992). In particular, it is important to show that a trans-critical regime still exists in
that case. From the concluding discussions in §4.3, it is seen that the upward jet is a
result of a special balance between the initial draw-in and the constant flux rate of
the sink. It is reasonable then to argue that a range of trans-critical Q would exist for
a slightly more gradual start-up, although the precise values of F1 and F2 bounding
this regime must be sensitive to q(t). To verify this, we introduce another parameter
into the problem, namely the start-up time scale δt, and consider ramp-like drain rate
functions of the form

q(t) =

{
Qt/δt, 0 6 t 6 δt

Q, t > δt.
(18)

We incrementally increase δt, and for each value again perform a systematic search
of F. The volume of results is fairly large and can be found in Xue (1997). The
important conclusion is that for sufficiently small δt . 0.06, the three distinct regimes
corresponding to the qualitatively different sub-, trans-, and super-critical flows still
obtain. For larger values of δt, the trans-critical regime disappears. As expected, a
more gradual start-up of the flow is less conducive to the development of the trans-
critical upward spike and the super-critical collapse. The values of the critical Froude
numbers F1 and F2 are therefore generally higher for smoother starting conditions.
The critical values of F1 and F2 we report for impulsive withdrawal are thus the
minimum values for this problem. This should be noted in comparisons to physical
experiments. Figure 21 shows typical free-surface profiles for the case of δ = 0.06 for
the three regimes respectively. The qualitative features are still quite similar to those
for abrupt start-up.

5. Summary and discussion
We consider the initial-boundary-value problem of the withdrawal of fluid by a

(point) sink submerged a distance h (initially) under a free surface in otherwise
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unbounded fluid. In the context of potential flow and impulsive start reaching a
constant volume flow rate Q, the problem, under gravitational acceleration g, is
governed by a single physical parameter, the Froude number F ≡ Q/4π(gh5)1/2. We
assume axisymmetry and perform fully nonlinear numerical computations using a
special far-field matching technique to allow long-time simulations. The complete
solution of the problem is mapped systematically varying F to reveal three distinct
flow regimes: (i) sub-critical regime,F <F1 – damped wave-like flow with asymptotic
steady state; (ii) trans-critical regime, F1 <F <F2 – flow reversal developing into
a sharp upward jet; and (iii) super-critical regime, F > F2 – rapid jet-like collapse
of the free surface. For impulsive start-up, the critical Froude numbers are found to
be F1 ≈ 0.1924 and F2 ≈ 0.1930.

It is instructive to compare our results to that of Miloh & Tyvand (1993) who
obtain a value of the critical Froude number of F = F∗ = 15−1/2 ' 0.258 for this
problem based on a small-time perturbation analysis. Presumably, for F > F∗, the
free surface will (eventually) collapse into the sink and steady state is not possible. We
note that F∗ is appreciably greater than F2 so that while the small-time expansion
does not contradict the present results, its prediction of F∗ can be regarded only
as a weak upper bound. Miloh & Tyvand (1993) obtain F∗ based on an argument
of balance between nonlinear and gravity effects at r = 0 (and t = 0) which is
equivalent to the vanishing of the term

...
η (0, 0) ≡ ∂3/∂t3 η(0, 0). Not surprisingly, our

computational results agree with theirs (only) for very small t. Figure 22 plots our
computed

...
η (0, t) for different F. At t = 0, we confirm that F =F∗ ' 0.258 indeed

divides positive and negatives of
...
η (0, 0). For F >F∗,

...
η (0, t) remains negative with

increasing t, but for F close to and less than F∗,
...
η (0, t) changes sign from positive

to negative after a very short time (cf. curve (3) in figure 22). This rapid variation
with time explains the difficulty of using an expansion in time around t = 0 to predict
the ultimate fate of the evolution.

Our prediction of a sub-critical asymptotic steady state may also be compared with
Forbes & Hocking (1990)’s finding of steady-state solutions for sufficiently small F.
Our critical value of F < F1 ≈ 0.1924 is however substantially lower than their
value of F < F† = 0.509 for steady (time-independent) solutions. The relationship
between the asymptotic steady state in an initial-value problem as in the present work
and the solution of the boundary-value problem where steady state is assumed as
in Forbes & Hocking (1990) cannot be established in general. This is obviously not
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possible for F1 < F < F† since such solutions exist only for the latter. Even for
F <F1, however, meaningful direct comparisons cannot be made (the lowest F for
which Forbes & Hocking 1990 show results is in fact greater than F1).

A problem closely related to the present one is the drainage of a circular tank
from a hole in the middle of the bottom. Lubin & Springer (1967) study this problem
experimentally and observe that the critical height at which there is dip formation
is independent of the initial height and during which the volume flow rate can be
considered constant. Based on this observation, they assume quasi-steady flow at that
instant and perform a very simple hydraulic analysis using the Bernoulli equation.
This crude calculation yields a critical Froude number F‡ = [27/55]1/2 ' 0.202 for
the initiation of the (super-critical) dip. This value is also in good agreement with
their experimental measurements. While the assumptions and certain aspects of the
simple analysis of Lubin & Springer (1967) can be questioned, it is quite remarkable
that their value of 0.202 is within 5% of our predicted value of F2 ≈ 0.1930.

A difficulty of comparing the problem of drainage from a circular tank with the
present one in unbounded fluid is that in the former case the average depth varies
with time (and the free surface is not horizontal when critical depth is reached) so
that a well-defined/precise Froude number based on height cannot be established.
This precludes more direct comparisons, for example, with the simulations of Zhou &
Graebel (1990) for the circular tank problem (their problem also contains additional
parameters associated with the tank radius and the radius of the drain). Nevertheless,
approximate comparisons can be made if we make reasonable estimates of the

equivalent critical height, ĥ say, based on the evolving free-surface profiles. Defining

ĥ as the height of the free surface on the sidewall at the instant when the free-surface
dip just begins to develop, and accounting for the effect of finite radius (cf. Miloh
& Tyvand 1993), we obtain from Zhou & Graebel (1990) equivalent critical Froude

number values for the development of a centre dip of F̂ in the ranges 0.163–0.202
and 0.202–0.232 (from their figures 2 and 3 respectively). These values are still in
reasonable agreement with the critical value for our problem of F2 ≈ 0.1930.

Finally we note that the problem we consider here of a fixed sink, impulsive start,
and constant volume flux rate, is a specialized case. The computational method we
present is general and can be extended in straightforward ways to account for effects
such as a sink in motion, time-varying drain rates, and the presence of boundaries.
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